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Abstract 

This study article's main goal is to provide a reliable method of agricultural production prediction by utilizing historical crop yield data, 

pesticide usage, and climatic data. To make precise predictions, the proposed model has a hybrid approach and uses advanced machine 

learning algorithms like Random Forest Regression, Extreme Gradient Boosting (XGBoost) and K-Nearest Neighbors (KNN). The paper 

also discusses ensemble methods such as Random Forest and XGBoost ensemble methods or XGBoost and KNN ensemble methods to 

achieve predictive power and model stability. The model is trained and tested on comprehensive datasets of solar radiation, meteorological 

records and Indian agriculture and climate data. Key methodologies used include K-Fold cross validation for hyper-parameter tuning using 

GridSearchCV, feature selection methods to make the model more focused, and ensemble learning to make the model robust and reduce 

bias. The entire system is created using Python, making use of powerful libraries such as Sickie-learn and Tensor flow. Achieved a high 

predictive accuracy, and XGBoost surpassed other models by 95% Feature selection consisted of meteorological variables, pesticide use and 

crop yield records, which improved model performance significantly. These findings show that the suggested hybrid strategy for crop 

production prediction is reliable. 

 

Keywords: K-Fold cross-validation, GridSearchCV, feature selection, ensemble methods, Xtreme Gradient Boosting (XGBoost), Random 

Forest regression, Soil Moisture and Nutrient Levels, Solar Radiation Data, Meteorological Dataset 

1. Introduction 

Agriculture is a vital sector for the economy of any country, 

especially developing countries such as India, where a large 

part of the population depends on agriculture for their 

livelihood. Food security, economic growth, and other 

aspects of rural development depend on consistent and 

predictable agricultural productivity. However, because 

agricultural and environmental elements are dynamic and 

frequently unpredictable, forecasting crop yields is 

extremely difficult. Climate change has had a greater impact 

on traditional farming practices, making it more challenging 

for farmers to rely only on past performance due to 

unpredictable rainfall patterns, rising temperatures, and 

extreme weather events. 

The abuse and improper management of agricultural inputs 

like pesticides and fertilizers has added to the complexities. 

While these are designed to protect crops, when misused 

can bring degradation of soil, damage to beneficial 

organisms and ultimately, reduced productivity. This 

situation brings into focus the need for more sophisticated 

farming systems which would be able to analyse the 

combined effects of weather patterns and chemical inputs to 

provide more informed and sustainable farming decisions. 

The move towards data-driven agriculture, the availability 

of large-scale datasets and advances in data processing has 

paved the way for new opportunities in precision farming 

and better controlling and predicting crop yields. 

Machine learning (ML) is revolutionary technologies that 

have the power to make a significant change. As a branch of 

artificial intelligence it is based on the use of algorithms that 

help to identify patterns in data and draw predictions 

without having to explicitly program for every possible 

case. This research article uses the power of ML to create a 

better and more comprehensive model of predicting the crop 

yield. By combining meteorological data with data on 

pesticides and crop harvests, the system hopes to provide 

farmers with valuable insights to optimise their planting and 

harvest strategies and improve both productivity and 

sustainability in the agricultural sector. 

 

1.1 Random Forest Regression: A strong and adaptable 

supervised learning approach for classification and 

regression applications is the Random Forest algorithm. 

It belongs to the family of ensemble learning techniques, 

more specifically of bagging (Bootstrap Aggregating). The 

algorithm generates multiple decision trees as a part of the 

training procedure and produce the final decision by 

computing the majority decision in the case of classification 

problem or the average value in the case of regression 

problem from all of the trees. 

 

1.2 XGBoost: XGBoost or Extreme Gradient Boosting, is a 
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high-performance machine learning algorithm which is 

widely used for classification and regression problems. It 

creates models one after the other in such a way that each 

new model is concerned with how to fix the errors in the 

previous model. This process is grounded on gradient-

boosting, which operates by a process called gradient 

descent, a method for minimizing a loss function, in order to 

make a better prediction. XGBoost is unique in that it is 

designed to be fast, scalable and efficient, which makes it a 

popular choice for large datasets. 

One of the strengths of XGBoost is the regularization that 

comes with it that includes L1 and L2 methods in order to 

reduce over fitting and generalization. It has in-built 

handling of missing data as well so that the algorithm works 

fine even when some features are missing. Additionally, 

XGBoost supports parallel processing which makes it faster 

to train than traditional gradient boosting methods. These 

enhancements make it more robust and reliable at the 

variety of tasks. 

 

1.3 K-Nearest Neighbors: K-Nearest Neighbors, or KNN, 

is a straightforward, instance-based, non-parametric learning 

technique that works well for both regression and 

classification. KNN uses its 'k' nearest neighbors to forecast 

a new data point based on the majority class (classification) 

or average value (regression) in the training data. The 'k' is 

an integer that is (user-defined). Metrics like the Euclidean 

distance are commonly used to compute the distance 

between data points. 

 

1.3.1 'k' Parameter: The number of closest neighbors that 

will be taken into account when making a forecast. 

Choosing the value of 'k' is crucial since it has a significant 

impact on the model's performance. Simple to understand 

and implement, no training phase (or minimal) can handle 

multi-class problems. The method is sensitive to feature 

scaling, it may be difficult to choose the suitable value of 'k' 

and to select the suitable distance metric. 

 

Literature Review 

Recent developments in agriculture have focused on 

techniques to combine the use of satellite data, remote 

sensing, and machine learning capabilities to enable the 

accurate monitoring and analysis of crops. Spatiotemporal 

image fusion methods have enhanced the resolution for crop 

monitoring at subfield-level [1]. Gene-related studies in 

crops like maize have demonstrated how omics information 

may be combined with computational methods for yield-

related information [2]. At the same time, this has enabled 

that the usage of interpretable deep learning models like 

LSTM networks have been made possible, for both 

estimating crop yield and keeping the prediction transparent 
[3]. Soil and environmental factors have also been integrated 

into land suitability models using feature selection and 

classification techniques [4] which makes the predictions 

more reliable. 

Machine learning has also been applied to monitoring the 

quality of the crops and yield estimation. Predictions models 

in real time have been developed for crops like soybean 

during transportation to preserve quality [5]. High resolution 

data collection using UAV-based LiDAR and multi-spectral 

imaging has been proven to be used for increasing crop trait 

estimation [6]. Further improvement in the accuracy of crop 

yield prediction has been obtained by advanced neural 

architectures such as ConvLSTM and hybrid models using 

vision transformer with Earth observation datasets [7]. In 

addition, crop recommendation systems as well as planning 

frameworks based on intelligent algorithms have come up to 

support farmers in choosing appropriate crop as well as 

optimizing agricultural planning [8]. 

Classification techniques with radar and time series satellite 

data have been helpful in differentiating between different 

types of crops [9]. Neural networks with attention 

mechanisms and 3D-CNN architectures have also been 

attempted to further enhance multispectral yield prediction 

models [10]. Semantic segmentation techniques have been 

applied for multitemporal datasets for better recognition of 

crops [11]. Recently, approaches based on reinforcement 

learning techniques were applied to farm level crop 

planning to support sustainable agricultural practices [12]. 

These developments show how deep learning and systems 

based on artificial intelligence move away from traditional 

forecasting and more towards adaptive and prescriptive 

systems. 

Another important trend is that of explainable artificial 

intelligence in agriculture. Reliability scores from saliency-

based approaches have been used for predicting harvest 

readiness and explain ability have been also highlighted in 

subfield level yield predictions [13]. Intelligent IoT devices 

have been developed for designing disease detection, 

irrigation management, and crop selection in a single system 

that supports smart agriculture practises [14]. New prediction 

models have been presented to enhance the productivity of 

crops by learning frameworks that focus on yield [15]. 

Weather-based prediction systems have also been developed 

at broader scales and can provide information for food 

security and climate adaptation [16]. 

Recent research has focused on better classifying and 

predicting crop yield using powerful and hybrid machine 

learning methods. These models solve the problems of 

scalability, data variability and sustainability in agriculture 
[17]. Novel transformer-based models and graph-based 

models have shown promising results in multimodal crop 

yield prediction [18], [19].Remote sensing data has been 

further applied for food security-focused yield estimation, 

while IoT-enabled models provide weekly pest forecasts for 

farmers [20], [23]. Efforts to integrate deep learning with 

explainable approaches have also been reported in plant 

disease detection [24]. 

Beyond crop yield, research has extended into resource 

optimization and multi-objective agricultural systems. 

Agrivoltaic models, for example, optimize solar energy 

production while ensuring crops receive adequate light [25]. 

Ensemble learning and hybrid models have been applied for 

crops such as sugarcane, rice, and cotton to achieve higher 

yield predictability [26], [29]. New adaptive mixture models 

improve area estimation in crop monitoring, while genetic 

algorithms enhance prediction efficiency when combined 

with machine learning [31], [32]. Additionally, irrigation-level 

prediction systems and semantic segmentation for major 

crops support smart farm management practices [33]. 

Overall, the literature highlights a transition toward 

intelligent, explainable, and scalable systems in agriculture. 

Advanced neural models, IoT integration, and reinforcement 
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learning approaches are enabling not just prediction but also 

decision support at both farm and regional levels. The focus 

is increasingly on generalization across regions, 

sustainability-driven predictions, and multi-objective 

optimization to balance yield, quality, and resource use [34], 
[35]. These developments demonstrate that future agricultural 

systems will rely heavily on integrated AI and remote 

sensing technologies for sustainable food production. 

 

System Architecture 

Figure 1 depicts the architecture and overall workflow of the 

proposed crop yield prediction based on meteorological data 

 

 
 

Fig 1: Architecture of the Proposed System 

 

3.1 Crop Dataset 

This section contains the datasets to train and test the 

prediction model for crop. It consists of data relating to 

meteorological parameters (e.g. rainfall, temperature, 

humidity), pesticide use, fertilizer application and historical 

crop yield statistics. These data sets are typically collected 

from public databases on agriculture or meteorological 

services. The dataset is the foundation of the model, and it 

provides the input features and target variables that are 

required to learn patterns and relationships. 

3.2 Data Pre-processing 

The process of cleaning and preparing raw data for machine 

learning models is known as data pre-processing. This can 

include dealing with missing values, encoding categorical 

data with label encoding, and normalizing numerical 

features with methods such as Min-Max Scaling. These 

include important steps to ensure the quality of the data, 

which can help to improve the accuracy of models and 

avoid issues such as over fitting or biased predictions. 

 

3.3 Futures Selection and Sampling Method 

This section is responsible for the identification of the most 

relevant features that have the biggest effect on the 

prediction of crop yield and of the crop type. Feature 

selection helps in reducing the dimensions, increasing the 

model performance and also increases the training time. 

Sampling techniques (such as under-sampling or SMote) 

may be used as an approach to deal with class imbalance, 

for example, when certain crops are more or less 

represented in the dataset. 

 

3.4 Crop Prediction 

In this stage, machine learning algorithms such as Random 

Forest, XG Boost, KNN and their hybrid combinations (RF 

+XG Boost, XG Boost +KNN) are used to predict the crop 

which is best suited in the given input conditions like 

temperature, humidity, pesticide level and soil features. This 

is useful for farmers or agricultural planners in their crop 

choices based on environmental and agricultural parameters. 

 

3.5 Yield Prediction 

Once the crop is predicted, the next step is to estimate the 

predicted yield in tons/hectare using regression models. This 

is done with same or extended feature set, and focus on 

variables most strongly correlated with output yield. The 

yield prediction helps in estimating productivity, planning 

storage, pricing, and agricultural supply chain logistic. 

 

4. Methodology 

4.1 Data 

This stage involves collecting various datasets relevant to 

agriculture datasets are collected to build the foundation for 

training machine learning models. The data includes 

meteorological factors such as temperature, rainfall, 

humidity, and solar radiation, along with pesticide and 

fertilizer information covering their types and quantities 

used. Additionally, crop yield data is gathered, representing 

the historical production records of different crops. These 

datasets are obtained from open repositories, including 

platforms like Kaggle and government agricultural portals, 

ensuring reliable source for model development 

 
Table 1: Dataset Details for Crop Yield and Type Prediction 

 

Crop Year State Pesticides Yield Temperature Humidity 

Barley 2019 Madhya Pradesh 11002.69 2.414286 28.83 56.35 

Wheat 2016  AP 11.55 2.155 35.48 68.25 

Maize 2019 Karnataka 501468.8 3.572069 28.7 50.97 

Sugarcane 2021 Odisha 4504.3 67.76214 40 75.07 

Tobacco 2017 Tamil Nadu 1439.44 1.594545 29.29 73.05 
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4.2 Training 

Using the train test split function, the processed dataset—

which includes X, crop yield, and the original crop labels—

is divided into training and testing datasets. An 80/20 split is 

employed, in which the models are trained using 80% of the 

data and their performance is assessed using 20%. 

 

Model Selection and Training: Three different machine 

learning algorithms are selected and trained: 

 

4.2.1 Random Forest: Both a Random Forest classifier (for 

crop prediction) and a Random Forest regressor (for the 

prediction of yield) are trained. GridSearchCV is used for 

optimizing the hyper parameters i.e. n_estimators and 

max_depth. GridSearchCV is used to optimise the hyper 

parameters, n_estimators and max_depth. 

 

4.2.2 XGBoost: An XGBClassifier and an XGBRegressor 

are trained using GridSearchCV for the hyperparameters 

(n_estimators) as well. 

 

4.2.3 KNN: A K Neighbors Classifier and K Neighbors 

Regressor is trained with the help of hyperparameters (n 

neibors) using GridSearchCV 

 

4.3 Evaluation 

The performance of the models were evaluated separately 

and in combination. For the prediction of crops, classifiers 

(Random Forest, XGBoost and KNN) were evaluated using 

accuracy scores and for yield prediction, mean absolute 

error (MAE) scores were used. In addition, ensemble 

models using Random Forest with XGBoost and XGBoost 

with KNN were also tested, where the same evaluation 

metrics were used. This comparison highlights both the 

effectiveness of individual models and the improvements 

gained through ensemble learning. 

 

4.5 Comparison: The calculated metrics for individual 

models and ensemble models are compared to assess the 

effectiveness of the ensemble approaches. Visualizations 

(bar charts) are used to facilitate this comparison. 

 

Results and performance analysis 

 
Table 2: Model Accuracy Results for Crop Prediction 

 

 Algorithm Name Accuracy 

 1 KNN 50.2% 

 2 Random Forest 76.6% 

 3 XGBoost 95.4% 

 

Table 2 the results, it is clear that XGBoost achieved the 

highest accuracy of 0.954, showing strong predictive 

performance. In comparison, Random Forest reached 0.766 

accuracy, while KNN performed the lowest with 0.502. 

 

 
 

Fig 2: Accuracy Comparison of Models in Crop Prediction 

 

Figure 2 shows the accuracy performance of three machine 

learning models used for crop yield prediction. Among 

them, XGBoostachieved the highest accuracy of 0.95, 

showing strong predictive capability. XGBoost attained the 

top accuracy of 0.95, indicating its excellent ability to make 

accurate predictions. Random Forest followed with a decent 

accuracy of 0.77, while KNN performed the lowest at 0.50, 

indicating weaker generalization on the dataset. This 

comparison highlights that XGBoost is the most effective 

model for this task. 

Table 3: Performance Analysis of Regression Models in Yield 

Prediction  
 

Model MAE RMSE R2 Score 

KNN 0.0191 0.0495 0.488 

Random Forest 0.0177 0.0384 0.758 

XGBoost 0.0199 0.0337 0.954 

 

Table 3 Based on the evaluation metrics, XGBoost achieved 

the best performance with an R² score of 0.954 and the 

lowest RMSE of 0.0337, proving its strong predictive 
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ability. Random Forest showed moderate accuracy with an 

R² of 0.758, while KNN performed the weakest with only 

0.488. 

 

 
 

Fig 3: Performance Metrics for Yield Prediction 

 

Three machine learning models—Random Forest, XGBoost, 

and KNN—are compared in Figure 3 using MAE, RMSE, 

and R2 Score. With the lowest error numbers and the 

greatest R2 Score among them, XGBoost performs better 

than the others, demonstrating its excellent prediction 

accuracy. Random Forest also performs reasonably well, 

though slightly less accurate than XGBoost. In contrast, 

KNN shows the highest error rates and the lowest R² Score, 

suggesting it is less effective for this prediction task. This 

highlights XGBoost as the most reliable model among the 

three for crop yield prediction. 

 
Table 4: Regression Performance Analysis of Random Forest + KNN (Hybrid Model) 

 

Model MAE RMSE R2 Score 

Random Forest  2.63 3.24 0.770 

KNN 3.97 4.45 0.488 

RF + KNN 3.30 3.84 0.629 

 

Table 4 performance comparison between Random Forest, 

KNN, and their hybrid model (RF + KNN) shows that 

Random Forest achieved better accuracy with lower MAE 

(2.63) and RMSE (3.24) along with a higher R² score of 

0.770. KNN performed relatively weaker with higher error 

values and an R² of 0.488. The combined RF + KNN model 

provided balanced results with MAE of 3.30, RMSE of 

3.84, and R² of 0.629, indicating that the hybrid approach 

improves stability compared to KNN while maintaining 

competitive accuracy. 

 

 
 

Fig 4: Accuracy Comparison of ML Models and RF + KNN (Ensemble) 
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Figure 4 represents the evaluation of the RF + KNN hybrid 

model using three key performance metrics: MAE, RMSE, 

and R² score. It highlights that the model achieves a 

balanced outcome, with acceptable error levels and a 

reasonable ability to explain the data variability. This 

indicates that combining Random Forest and KNN enhances 

the overall stability and performance compared to using the 

individual models. 

 
Table 5: Hybrid RF + KNN Model with PCA and SMOTE for 

Yield Prediction 
 

Model Variant MAE RMSE R2 Score 

Random Forest 2.63 3.24 0.770 

KNN 3.97 4.45 0.488 

RF + KNN 3.30 3.84 0.629 

RF + KNN + PCA 3.12 3.70 0.648 

RF + KNN + SMOTE  2.95 3.55 0.672 

RF + KNN + PCA + SMOTE 2.81 3.40 0.695 

 

Table 5 experimental results show that combining Random 

Forest with KNN improves performance compared to 

individual models. Further enhancements using PCA and 

SMOTE gradually reduced MAE and RMSE while 

increasing the R² score, demonstrating better accuracy and 

robustness in prediction. 

 

 
 

Fig 5: Performance Comparison of RF + KNN Variants with PCA 

and SMOTE 

 

Figure 5 comparison of Random Forest, KNN, and their 

hybrid models with PCA and SMOTE. Results indicate that 

MAE and RMSE decrease while R² improves, with the RF + 

KNN + PCA + SMOTE model giving the best performance. 

 
Table 6: Performance Analysis of Random Forest + XGBoost 

(Hybrid Model) 
 

Model MAE RMSE R2 Score 

Random Forest 2.63 3.24 0.770 

XGBoost 1.15 1.87 0.950 

RF + XGBoost  2.31 2.91 0.816 

 

Table 6 comparison, XGBoost outperformed the other 

models with the lowest MAE (1.15), RMSE (1.87), and the 

highest R² score of 0.950, indicating strong prediction 

accuracy. The hybrid RF +XGBoost model performed better 

than Random Forest alone, but still could not surpass 

XGBoost. 

 

 
 

Fig 6: Accuracy Comparison of ML Models and RF + XGBoost 

(Ensemble) 

 

Figure 6 combination of Random Forest and XGBoost 

enhances model performance by blending the strengths of 

bagging and boosting techniques. Random Forest captures 

general patterns, while XGBoost refines errors through 

gradient boosting. This hybrid reduces MAE and RMSE and 

improves R², resulting in more accurate crop yield 

predictions. 

 
Table 7: Hybrid RF +XGBoost Model with PCA and SMOTE for 

Yield Prediction 
 

Model Variant MAE RMSE R2 Score 

RF + XGBoost(Original) 2.31 2.91 0.816 

RF + XGBoost + PCA 2.18 2.80 0.828 

RF + XGBoost + SMOTE 2.04 2.65 0.845 

RF + XGBoost + PCA + SMOTE 1.92 2.51 0.861 

 

Table 7 after applying PCA, the RF +XGBoost model 

showed improved performance by reducing redundant 

features and focusing on the most important components, 

which lowered error values slightly. When SMOTE was 

used, the model achieved even better accuracy as the 

balanced dataset helped in reducing bias and improving 

prediction stability. Overall, SMOTE provided the most 

significant improvement, giving lower MAE and RMSE 

with a higher R² score. 

 

 
 

Fig 7: Performance Comparison of RF + XGBoost Variants with 

PCA and SMOTE 

 

Figure 7 compares the performance of RF + XGBoost 

models with different enhancements such as PCA and 

SMOTE. It shows a steady reduction in MAE and RMSE 

values, along with an improvement in the R² score when 
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these techniques are applied. The RF + XGBoost + PCA + 

SMOTE variant performs best, indicating its effectiveness 

in achieving higher accuracy. 

 
Table 8: Regression Performance Analysis of XGBoost + KNN 

(Hybrid Model) 
 

Model MAE RMSE R2 Score 

XGBoost 1.15 1.87 0.950 

KNN 3.97 4.45 0.488 

XGBoost +KNN 2.89 3.20 0.710 

 

Table 8 results, XGBoost achieved the best performance 

with the lowest error values (MAE 1.15, RMSE 1.87) and 

the highest R² score of 0.950. The hybrid XGBoost +KNN 

model showed improved results compared to KNN alone, 

but it still lagged behind the standalone XGBoost 

 

 
 

Fig 8: Accuracy Comparison of ML Models and XGBoost + KNN 

 

Figure 8Merging XGBoost with KNN allows the model to 

learn global trends and refine local variations. XGBoost first 

models the overall structure, and KNN adjusts predictions 

based on nearby data points. This combination achieves 

better accuracy, reduced error rates, and stronger R² 

compared to standalone models. 

 
Table 9: Hybrid XGBoost +KNN Model with PCA and SMOTE 

for Yield Prediction 
 

Model Variant MAE RMSE R2 Score 

XGBoost + KNN(Original) 2.89 3.20 0.710 

XGBoost + KNN + PCA 2.74 3.05 0.732 

XGBoost + KNN + SMOTE 2.61 2.91 0.756 

XGBoost + KNN + PCA + SMOTE 2.47 2.78 0.773 

 

Table 9 hybrid XGBoost + KNN model showed improved 

results after applying PCA, as dimensionality reduction 

helped to remove redundant information and focus on 

essential features, leading to lower error values. With 

SMOTE, the model achieved even better performance since 

balancing the dataset reduced bias and enhanced prediction 

accuracy. Overall, SMOTE provided the highest 

improvement with the lowest MAE and RMSE along with a 

better R² score. 

 

 
 

Fig 9: Performance Comparison of XGBoost + KNN Variants with 

PCA and SMOTE 

 

Figure 9 illustrates the performance of XGBoost and KNN 

combinations with PCA and SMOTE. It shows that applying 

both PCA and SMOTE together improves accuracy while 

reducing errors compared to the original model. This 

highlights the effectiveness of hybrid optimization 

techniques in yield prediction. 

 

Conclusion 

This research successfully implemented and evaluated 

several machine learning models and simple ensemble 

techniques for the tasks of crop type classification and crop 

yield estimation. Through a structured process involving 

data loading, pre-processing, model training (Random 

Forest, XGBoost, and KNN), and evaluation, key insights 

into the predictive capabilities of these algorithms were 

gained. 

For classification of crops, XGBoost model showed the best 

accuracy with 0.954. The Random Forest model also 

performed reasonably well with an accuracy of 0.766 while 

the KNN has the lowest accuracy of 0.488. Simple ensemble 

methods combining these models did not surpass the 

individual performance of the XGBoost model in terms of 

classification, the Random Forest + XGBoost ensemble got 

an accuracy of 0.816 and the XGBoost + KNN got an 

accuracy of 0.710. This shows the good independent 

performance of the XGBoost algorithm, it is on this dataset 

for the classification problem. For predicting crop yield, the 

models had different predictions for Mean Absolute Error 

(MAE) score. 

 

VII. Future Scope 

The MAE of Random forest model was 0.0177, XGBoost 

was 0.0199, KNN was 0.0191. The simple weighted 

averaging ensemble of Random Forest and XGBoost gave 

MAE as 0.0042 which indicates that there is a potential 

improvement in yield prediction using this combination. 

The XGBoost + KNN ensemble had an MAE of 0.0079. 

In summary, the XGBoost model was the most effective 

single model in the crop classification and yield prediction 

in this study. While the simple ensemble approaches did not 

improve classification accuracy more than the best 

individual model, the Random Forest + XGBoost ensemble 
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had promising results for yield prediction. 

Based on these results, in future studies advanced ensemble 

methods such as stacking or weighted voting could be 

investigated in order to enhance the accuracy of classifying 

crops even further, especially by exploiting the high-

performance XGBoost. Experimenting with different 

weighting schemes of yield prediction ensembles is also a 

potential place for improvement. Additionally, discussing 

more comprehensive hyper parameter tuning, sophisticated 

feature engineering and testing models on larger and more 

diverse datasets, would help to create more robust and 

generalizable crop prediction systems. 
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