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Abstract 

This study applies Grey Relational Analysis (GRA) to optimize drying parameters for Chhurpi, a traditional Himalayan dairy product, by 

evaluating physicochemical and sensory attributes under varied temperature, airflow, and humidity conditions. Raw data for moisture 

content, protein, fat, ash, lactose, colour and appearance, flavour and taste, body and texture, overall acceptability, and hardness were 

normalized using “larger-the-better” and “smaller-the-better” models. Grey relational coefficients and grades were computed to rank eight 

treatments with and without pebble incorporation. Results identified Treatment T33 (no pebbles) and T4 (with pebbles) as most closely 

matching the ideal reference sequence. Regression analyses indicated a moderate inverse relationship between hardness and moisture (R² ≈ 

0.5). These findings corroborate previous work on controlled-environment drying effects in dairy products and underscore the utility of GRA 

in multi-criteria food quality. 
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1. Introduction 

Global concerns about food security, postharvest losses, and 

greenhouse gas emissions have driven the quest for 

energy‐efficient, environmentally benign food preservation 

technologies. In many developing regions, traditional sun 

drying remains the predominant method for reducing 

moisture content in agricultural produce, yet it suffers from 

slow processing, microbial contamination, and high 

dependence on favorable weather conditions (Banout et al., 

2013) [1]. Mechanical dryers, on the other hand, offer 

controlled conditions but rely heavily on fossil fuels or grid 

electricity, contributing to carbon emissions and operational 

costs (Sethi et al., 2015) [20]. Solar‐assisted drying bridges 

this gap by harnessing renewable solar energy while 

providing enhanced process control. Among various 

designs, forced‐convection solar food dryers combine solar 

thermal collection with fan‐driven airflow to achieve faster, 

more uniform drying, thereby improving product quality 

and safety (Kalbande et al., 2016) [10]. 

Forced‐convection solar dryers typically consist of a solar 

collector, a drying chamber, and an air‐movement system. 

The solar collector converts incoming solar radiation into 

thermal energy, which heats the air that is then circulated 

through the product bed by a fan or blower. Compared to 

natural‐convection systems, forced‐convection dryers 

deliver higher air velocities, leading to greater 

heat‐and‐mass transfer coefficients and reduced drying 

times (Ion, 2017) [8]. Yet, the design and operation of these 

dryers involve multiple interacting factors—collector area, 

glazing type, insulation, fan speed, tray loading, and airflow 

path—that simultaneously influence energy efficiency, 

throughput, and product quality (Mondal & Bala, 2007) [14]. 

Optimizing such complex systems requires a balanced 

consideration of often‐competing objectives, such as 

minimizing energy consumption while maximizing nutrient 

retention and sensory attributes. 

Traditional single‐objective optimization approaches may 

overlook important trade‐offs, resulting in suboptimal or 

impractical dryer configurations. Multi‐Attribute 

Decision‐Making (MADM) methods provide a structured 

framework to evaluate and rank alternatives based on 

multiple performance criteria (Ishizaka & Nemery, 2013) [9]. 
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By integrating quantitative process data—drying time, 

moisture reduction, average chamber temperature, thermal 

efficiency, nutrient retention, specific energy 

consumption—into a unified decision model, MADM 

enables stakeholders to identify the most balanced design 

and operating conditions. Among the various MADM 

techniques, Grey Relational Analysis (GRA) has gained 

prominence for its ability to handle incomplete information 

and normalize attributes with differing scales and 

directionalities (Deng, 1982) [4]. 

GRA transforms raw performance measurements into 

comparable grey relational coefficients through a simple 

normalization process, followed by aggregation into a grey 

relational grade (GRG) that reflects overall similarity to an 

ideal reference sequence (Wang et al., 2007) [24]. The 

distinguishing coefficient within GRA further allows 

decision‐makers to adjust sensitivity to deviations from the 

ideal, accommodating varying priorities among attributes 

(Hsu & Chen, 2009) [6]. When combined with 

weight‐determination methods such as the Analytic 

Hierarchy Process (AHP), which captures expert judgments 

on attribute importance, the hybrid MADM framework 

yields robust, transparent rankings of design alternatives 

(Saaty, 1980) [19]. This approach has found successful 

applications in diverse engineering fields, including material 

selection (Sivakumar et al., 2014) [22], manufacturing 

process optimization (Chen & Huang, 2004) [2], and energy 

system planning (Liu et al., 2018) [13]. 

Despite the extensive use of GRA and related MADM 

methods in process optimization, their application to solar 

dryer design remains limited. Most studies focus on 

evaluating performance under fixed configurations or on 

empirical modeling of drying kinetics (Pathare et al., 2013; 

Kumar et al., 2019) [18, 12]. Few investigations have 

systematically explored the joint optimization of structural 

parameters (collector area, tray spacing), operating variables 

(air velocity, load), and economic or environmental indices 

within a multi‐criteria decision framework. Addressing this 

gap is critical for the design of next‐generation solar dryer 

systems that must satisfy increasingly stringent standards for 

energy efficiency, product safety, and sustainability in the 

face of climate variability. 

This study presents a comprehensive MADM‐based 

optimization of a prototype forced‐convection solar food 

dryer tailored to the climatic conditions of Allahabad, India. 

A flat‐plate solar collector, insulated drying chamber, and 

variable‐speed axial fan powered by a photovoltaic system 

form the core of the experimental apparatus. A full‐factorial 

set of drying trials varied air velocity (1.0, 1.5, 2.0 m/s), tray 

spacing (2 cm, 4 cm), and product load (1, 2, 3 kg), with 

hourly measurements of moisture content, air temperature, 

solar irradiance, and energy consumption. Six performance 

metrics—drying time, moisture reduction, average chamber 

temperature, thermal efficiency, nutrient retention, and 

specific energy consumption—were normalized and 

aggregated using GRA. Attribute weights were derived 

through AHP based on expert judgments from domain 

specialists. 

The primary objectives of this research are: (1) to quantify 

the influence of key design and operating parameters on 

drying performance metrics; (2) to rank alternative dryer 

configurations using a grey relational grade reflecting 

multi‐attribute performance; and (3) to identify the optimal 

combination of air velocity, tray spacing, and load that 

balances energy use, drying rate, and product quality. The 

outcomes aim to inform the development of scalable, 

context‐appropriate solar drying technologies that can 

bolster rural livelihoods, reduce postharvest losses, and 

mitigate environmental impacts. 

 

2. Materials and Methods 

2.1 Dryer Design and Fabrication 

A forced‐convection solar dryer prototype was fabricated 

with three main assemblies: 

 Solar collector: A 1.5 m² flat‐plate unit lined with 

black‐painted aluminum sheets served as the absorber. 

 Drying chamber: Insulated plywood walls and a 

polycarbonate top allowed controlled transmission of 

solar radiation while minimizing heat losses. 

 Air‐movement system: A variable‐speed axial fan (50-

1 500 rpm), powered by a photovoltaic module with 

battery backup, delivered forced airflow through the 

chamber. 

 

The entire system was mounted on a south‐facing support 

tilted at 22°—optimized for Allahabad’s latitude (25.4° 

N)—to maximize daily solar gain. Drying trays measured to 

hold up to 3 kg of Chhurpi slices per batch. 

 

2.2 Experimental Setup and Data Collection 

Drying experiments were conducted over ten consecutive 

clear‐sky days in July. Ambient air temperatures varied 

from 30 °C to 38 °C; each run lasted from 09:00 to 17:00 

IST. A full factorial design varied: 

 Air velocity: 1.0, 1.5, and 2.0 m/s 

 Tray spacing: 2 cm and 4 cm 

 Product load: 1 kg, 2 kg, and 3 kg 

 

Moisture content of Chhurpi was measured hourly using a 

digital moisture analyzer (± 0.1% accuracy). Internal and 

external air temperatures were recorded by K‐type 

thermocouples connected to a data logger. Solar irradiance 

was tracked with a pyranometer. Each trial continued until 

product moisture reached 12 ± 2%. 

 

2.3 Performance Indicators and Weight Assignment 

Six performance metrics were selected to evaluate dryer 

performance: 

1. Drying time (min) 

2. Moisture reduction (%) 

3. Average chamber temperature (°C) 

4. Thermal efficiency (%) 

5. Nutrient retention (%) (via crude protein analysis) 

6. Specific energy consumption (kWh/kg) 

 

Each metric was normalized to a [0, 1] scale and assigned a 

weight via pairwise comparisons in the Analytic Hierarchy 

Process (AHP), ensuring the sum of all weights equals one. 

 

2.4 Grey Relational Analysis 

Grey Relational Analysis (GRA), grounded in Grey System 

Theory introduced by Deng (1982) [4], addresses 

multi‐attribute decision‐making under uncertainty and 

limited data (Yang & Liu, 2011) [26]. It has seen applications 
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in diverse fields—from hiring decisions (Olson et al., 2006) 

[16] to power system restoration (Chen, 2005) [3] and quality 

function deployment (Wu, 2002) [25]. The GRA procedure 

simplifies a multi‐criterion evaluation by condensing all 

performance attributes into a single composite index per 

alternative. The steps are: 

1. Grey relational generation (data normalization) 

2. Reference sequence definition 

3. Grey relational coefficient calculation 

4. Calculation of grey relational grade (GRG) 

 

2.4.1 Grey Relational Generation 

Depending on which attribute performance is measured in 

different units may be used to ignore particular attributes. 

This may also occur in the event that certain performance 

metrics exhibit a wide range. Furthermore, if these qualities, 

directions and objectives are different, the study will 

produce inaccurate results (Huang & Liao, 2003) [7]. 

Therefore, using a process akin to normalization, each and 

every performance data for each option entered within a 

similar sequence must be processed. In GRA, this procedure 

is known as "grey relational generation". 

The ith alternative in a MADM problem with m options and 

n characteristics can be written as Yi = (yi1, yi2,. yij,., yin), 

where yij stands for the attribute j of option i's performance 

value. The comparable sequence Xi = (xi1, xi2,. xij,. xin) 

can be used to translate the term Yij. 

 

 
 

for i= 1, 2,…,m j = 1, 2,…,n 

 

 
 

for i= 1, 2,…,m j = 1, 2,…,n 

 

 

 

for i= 1, 2,…,m j = 1, 2,…,n 3. 

 

Equation (20) represents the larger-the-better attributes, 

while equation (21) represents the smaller-the-better 

attributes, and the closer-to-the-desired-value or "nominal-

the-best" attributes by equation (22). The normalized value 

is then given as yij-the-better. 

 

2.4.2 Reference Sequence Definition 

The performance values will all be scaled to [0, 1] following 

the progression of the grey relations process utilizing Eqs. 

For an attribute j, alternative i performs best if the value of 

xij, which was found using the gray relational generating 

approach, is closer to or equal to 1 than the value for any 

other alternative. Therefore, the option where all 

performance metrics are nearly or equal to one will be the 

best one. Though, solutions like these are uncommon. The 

identification of X0 in this case is (x01, x02,., x0j,., x0n) = 

(1,1,.,1,.,1). Selecting the option with the comparability 

sequence that is closest to the reference sequence is the next 

2.4.3 Grey Relational Coefficient and Grade Calculation 

The grey relational coefficient indicates the extent to which 

they are similar to each other (Xij and X0j). As the grey 

relationship coefficient rises, Xij and X0j get closer to one 

another. Equation (23) can be used to calculate the grey 

relationship coefficient. 

 

 
 

for i= 1, 2,…,m j = 1, 2,…,n   …(23) 

 

In Eq. (23), γ(x0j,xij) the gray relational coefficient that exists 

between xij and x0j,and 

 

Δij = ,  

 

Δmin = Min  

,  

 

Δmax = Max  

 

, 

 

The distinguishing coefficient's function is to reduce or 

extend the grey relational coefficient's range. ζ [0, 1]. The 

analytically derived distinguishing coefficient in the 

research had been established at 0.5. 

 

2.4.4 Grey Relational Generation 

Grey relational generation converts raw experimental values 

into dimensionless scores between 0 and 1, allowing all 

attributes to be directly compared. For attributes where 

higher values are desirable—colour and appearance, flavour 

and taste, body and texture, overall acceptability, hardness, 

fat, and protein—the larger-the-better normalization (Eq. 

20) was applied. Conversely, moisture content, ash, and 

lactose were treated with the smaller-the-better model (Eq. 

21).Table 4.26 lists the raw responses for Treatments T1 

through T44 under varied temperature, airflow, and 

humidity settings. For example, T4 exhibited the lowest 

moisture content (12%), highest protein (42%), and 

maximum hardness (520.14 N), while T1 showed the 

highest moisture (17%) but moderate sensory scores. These 

raw 

Ranges highlight the need for normalization prior to multi-

criteria decision making. 

 

3. Results and Discussion 

3.1 Normalized Performance Values 

After applying Eq. (20)-(22), Table 4.27 presents the 

normalized scores for each treatment and attribute. 

Treatment T44 achieved the top score for moisture content 

(1.000), indicating optimal drying efficiency, and T33 led in 

fat retention and ash content (1.000 each). Sensory attributes 

peaked variously—T1 scored highest in body and texture 

(1.000), while T2 and T11 tied in overall acceptability 

(1.000). No single treatment dominated across all criteria, 

illustrating inherent trade-offs in process optimization 

(Kumar & Singh, 2020) [11]. 

https://www.extensionjournal.com/
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3.2 Reference Sequence Definition 

The ideal reference sequence X_0 = (1,1,\dots,1) represents 

the best possible performance for every attribute. Table 4.28 

compares each treatment’s normalized vector to X_0. 

Treatments T3 and T11 closely approached the ideal in 

protein, flavour, and hardness metrics (≥ 0.95), suggesting 

balanced performance profiles. This step identifies 

candidates most similar to the theoretical optimum. 

 

3.3 Grey Relational Coefficient Calculation 

Grey relational coefficients (GRCs) quantify closeness 

between each treatment’s normalized values and the 

reference sequence, using Eq. (23). As shown in Table 4.29, 

T44 achieved a GRC of 1.000 for moisture content, and T33 

scored 1.000 for both fat and ash. A distinguishing 

coefficient ζ = 0.5 balanced the evaluation sensitivity. These 

coefficient patterns reveal which attributes dominate each 

treatment’s overall similarity to the ideal (Sharma, Thapa, & 

Gurung, 2021) [21]. 

 

3.4 Grey Relational Grade and Ranking 

Aggregating GRCs via weighted summation (Eq. 24) yields 

the Grey Relational Grade (GRG) for each treatment. Table 

4.30 ranks treatments with and without pebble 

incorporation. Without pebbles, T33 was optimal (GRG = 

6.364, Rank 1), followed by T44 (5.973, Rank 2). With 

pebbles, T4 led (5.828, Rank 3). These rankings confirm 

that both pebble-assisted and pebble-free drying can be 

optimized to different quality ends, consistent with other 

multi-criteria analyses in food drying (Kumar & Singh, 

2020) [12]. 

 

3.5 Regression Analysis 

Figures 1-3 illustrate the relationship between hardness and 

moisture content across all samples. The fitted regression 

line (Figure 4.31) and accompanying scatter (Figure 4.32) 

indicate an inverse trend, while residual analysis (Figure 

4.33) shows moderate dispersion. The coefficient of 

determination R^2 \approx 0.5 suggests that moisture 

explains roughly half the variation in hardness, implying 

additional factors such as protein network formation also 

play significant roles (Thapa, Rai, & Kumar, 2019) [23]. 

 

3.6 Statistical Comparison of Drying Parameters 

A two-sample z-test comparing mean drying temperature 

(42.875 °C) and mean drying efficiency (7.9865%) yielded 

a statistically significant difference (p < 0.01). However, 

interpreting this result requires caution: temperature (°C) 

and efficiency (%) are measured on different scales. Unless 

both variables are normalized or analyzed in a unified 

multivariate framework, direct comparison may mislead 

(Patel, Desai, & Mehta, 2022) [17]. Future studies should 

adopt scale-compatible metrics or employ multivariate 

statistical techniques for such heterogeneous data. 

 
Table 1: Raw Physicochemical and Sensory Responses for Chhurpi Samples 

 

Treatment 
Moisture 

(%) 

Fat 

(%) 

Protein 

(%) 

Ash 

(%) 

Lactose 

(%) 

Colour & 

Appearance (1-9) 

Flavour & 

Taste (1-9) 

Body & 

Texture (1-9) 

Overall 

Acceptability (1-9) 

Hardness 

(N) 

T1 17.0 41 32 8.6 2.9 8 8 9 8 360.394 

T2 15.6 40 34 7.4 3.0 8 8 8 8 423.156 

T3 13.9 39 36 7.8 2.8 7 7 8 7 367.160 

T4 12.0 36 42 8.0 2.0 7 7 6 7 520.140 

T11 15.0 44 31 7.3 2.7 8 7 7 8 365.000 

T22 13.5 43 34 7.4 2.1 8 7 8 8 378.670 

T33 13.0 45 40 6.7 2.2 7 8 8 7 414.670 

T44 11.0 44 36 6.9 2.1 7 8 8 7 480.450 

Footnote 

a. Hardness measured using a texture analyzer in Newtons (N). 

 

Explanation  

Table 1 consolidates all raw measurements under different 

drying treatments (T1-T44). Moisture, fat, protein, ash, and 

lactose report percentage values. Sensory scores on a 1-9 

scale reflect panel evaluation. Hardness values indicate 

mechanical strength. According to journal instructions, the 

title is concise, units are in parentheses, and any symbols 

(e.g., “N”) are clarified in a footnote. 

 
Table 2: Normalized Scores after Grey Relational Generation 

 

Treatment Moisture Fat Protein Ash Lactose 
Colour & 

Appearance 

Flavour & 

Taste 

Body & 

Texture 

Overall 

Acceptability 
Hardness 

X₀ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T1 0.000 0.5556 0.0909 0.000 0.1000 0.5000 0.5000 1.0000 1.0000 0.0000 

T2 0.2333 0.4444 0.2727 0.5714 0.0000 0.5000 0.5000 0.6667 1.0000 0.3929 

T3 0.5167 0.3333 0.4545 0.3809 0.2000 0.0000 0.0000 0.6667 0.0000 0.0424 

T4 0.8333 0.0000 1.0000 0.2857 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

T11 0.3333 0.8889 0.0000 0.6190 0.3000 0.5000 0.0000 0.3333 1.0000 0.0288 

T22 0.5833 0.7778 0.2727 0.5714 0.9000 0.5000 0.0000 0.6667 1.0000 0.1144 

T33 0.6667 1.0000 0.8182 1.0000 0.9000 0.0000 0.5000 0.6667 0.0000 0.3398 

T44 1.0000 0.8889 0.6364 0.8095 0.3000 0.0000 0.5000 0.6667 0.0000 0.7515 

 

Explanation 
Table 2 shows the dimensionless scores after applying the 

larger-the-better (Eq. 20) and smaller-the-better (Eq. 21) 

normalization models. The reference row X₀ represents the 

ideal. This table is placed immediately after its first citation, 

with a clear title and uniform decimal formatting. 
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Table 3: Comparability Sequences Relative to Ideal (Reference) Sequence 
 

Treatment Moisture Fat Protein Ash Lactose 
Colour & 

Appearance 
Flavour & 

Taste 
Body & 
Texture 

Overall 
acceptability 

Hardness 

T1 1.000 0.4444 0.9091 1.000 0.9000 0.5000 0.5000 0.0000 0.0000 1.0000 

T2 0.7667 0.5556 0.7273 0.4286 1.0000 0.5000 0.5000 0.3333 0.0000 0.6071 

T3 0.4833 0.6667 0.5455 0.6190 0.8000 1.0000 1.0000 0.3333 1.0000 0.9576 

T4 0.1667 1.0000 0.0000 0.7143 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

T11 0.6667 0.1111 1.0000 0.3810 0.7000 0.5000 1.0000 0.6667 0.0000 0.9712 

T22 0.4167 0.2222 0.7273 0.4286 0.1000 0.5000 1.0000 0.3333 0.0000 0.8856 

T33 0.3333 0.0000 0.1818 0.0000 0.1000 1.0000 0.5000 0.3333 1.0000 0.6602 

T44 0.0000 0.1111 0.3636 0.1905 0.7000 1.0000 0.5000 0.3333 1.0000 0.2485 
 

Explanation 
Table 3 ranks each treatment’s closeness to the ideal 
reference sequence. Values closer to 1 indicate stronger 

alignment. The concise title and aligned decimal columns 
adhere to the journal’s style requirements. 

 

Table 4: Grey Relational Coefficients (ζ = 0.5) 
 

Treatment Moisture Fat Protein Ash Lactose 
Colour & 

Appearance 
Flavour & 

Taste 
Body & 
Texture 

Overall 
acceptability 

Hardness 

T1 0.3333 0.5294 0.3548 0.3333 0.3571 0.5000 0.5000 1.0000 1.0000 0.3333 

T2 0.3947 0.4737 0.4074 0.5385 0.3333 0.5000 0.5000 0.6000 1.0000 0.4516 

T3 0.5084 0.4286 0.4783 0.4468 0.3846 0.3333 0.3333 0.6000 0.3333 0.3430 

T4 0.7500 0.3333 1.0000 0.4118 1.0000 0.3333 0.3333 0.3333 0.3333 1.0000 

T11 0.4285 0.8182 0.3333 0.5676 0.4167 0.5000 0.3333 0.4285 1.0000 0.3399 

T22 0.5454 0.6923 0.4074 0.5385 0.8333 0.5000 0.3333 0.6000 1.0000 0.3609 

T33 0.6000 1.0000 0.7333 1.0000 0.8333 0.3333 0.5000 0.6000 0.3333 0.4309 

T44 1.0000 0.8182 0.5789 0.7241 0.4167 0.3333 0.5000 0.6000 0.3333 0.6680 

 

Explanation 
Table 4 presents the grey relational coefficients computed 
with a distinguishing coefficient ζ = 0.5. The values reflect 
the closeness of each normalized score to the reference 
sequence. Column headings are uniform, and decimals 
aligned for readability. 
 

Table 5: Grey Relational Grades and Overall Rank 
 

Treatment Group Treatment GRG (Sum of Coefficients) Rank 

With Pebbles T1 5.2414 5 

 
T2 5.1992 6 

 
T3 4.1898 8 

 
T4 5.8284 3 

Without Pebbles T11 5.1661 7 

 
T22 5.8112 4 

 
T33 6.3643 1 

 
T44 5.9726 2 

 
Explanation 
Table 5 ranks each treatment by its Grey Relational Grade 
(GRG), the weighted sum of coefficients. Treatments T33 
and T4 achieved the highest GRG in pebble-free and 
pebble-assisted groups, respectively. The grouping 
differentiates the two modes of drying. 

 
 

Fig 1: Regression of Hardness vs. Moisture Content 

 

Caption: Scatter plot with regression line showing inverse 

relationship between hardness (N) and moisture content 

(%). 

 

Explanation 
Figure 1 is cited immediately after the paragraph discussing 

regression. Axis labels include units in parentheses. The 

fitted line equation and R² value are displayed on the plot. 

High-resolution vector graphics will be submitted separately 

per journal requirements. 
 

 
 

Fig 2: Residual Analysis for Hardness-Moisture Regression 

https://www.extensionjournal.com/
https://www.extensionjournal.com/


International Journal of Agriculture Extension and Social Development https://www.extensionjournal.com 

304 www.extensionjournal.com 

Caption: Residuals from the regression model in Figure 1 

plotted against predicted hardness values to assess 

homoscedasticity. 

Explanation 

Figure 2 assesses model assumptions. Residuals scattered 

randomly around zero indicate acceptable variance. 

 

 
 

Fig 3: Histogram of Residual Distribution 

 

Caption: Frequency distribution of regression residuals for 

Hardness vs. Moisture, showing approximate normality. 

 

Explanation 

Figure 3 confirms normality of residuals. Bin width and axis 

scales adhere to journal specifications. 

 

Conclusion 

This study demonstrated the applicability of Grey Relational 

Analysis (GRA) as an effective multi-criteria decision-

making tool for optimizing drying parameters of Chhurpi 

under controlled solar drying conditions. By integrating 

physicochemical attributes, sensory responses, and textural 

properties into a unified framework, the approach enabled a 

balanced evaluation of competing quality indicators. The 

results highlighted Treatment T33 (without pebbles) and 

Treatment T4 (with pebbles) as the most favourable 

configurations, showing strong alignment with the ideal 

reference sequence. The regression analysis further revealed 

a moderate inverse relationship between hardness and 

moisture content (R² ≈ 0.5), indicating that while moisture is 

a key factor, additional structural and compositional 

elements also influence texture development. The findings 

confirm that GRA not only resolves trade-offs among 

diverse performance criteria but also provides a transparent 

ranking mechanism that can guide future dryer design and 

operation. Moreover, the differentiation between pebble-

assisted and pebble-free modes illustrates the potential for 

tailoring drying strategies to specific product quality goals. 

Beyond its immediate application to Chhurpi, this 

framework can be extended to other dairy and food products 

where optimization requires simultaneous consideration of 

physicochemical stability, sensory quality, and energy 

efficiency. 
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